MoNETA – sąmonė, sudaryta iš memristorių  (37)

Visi šio ciklo įrašai

  • 2010-12-02 MoNETA – sąmonė, sudaryta iš memristorių  (37)

Prisijunk prie technologijos.lt komandos!

Laisvas grafikas, uždarbis, daug įdomių veiklų. Patirtis nebūtina, reikia tik entuziazmo.

Sudomino? Užpildyk šią anketą!

Tačiau toks duomenų buferizavimo metodas netiks, jei bandysite sumodeliuoti smegenis. Net palyginti paprastos smegenys savyje talpina dešimtis milijonų neuronų, tarpusavyje sudarančių milijardus sinapsių. Todėl bet koks bandymas sumodeliuoti tokio masto tinklą pareikalautų tiek spartinančiosios atminties, kiek jos tilptų, tarkime, šiuolaikiniame kietajame diske.

Kodėl? Didžioji dalis tokiai smegenis imituojančiai sistemai (informatikai jas vadina neuromorfinėmis architektūromis) reikalingos energijos ir skaičiavimų pajėgumų būtų skiriama sinapsėse vykstančiam signalų apdorojimui mėgdžioti. Išties, vos vienai sinapsei sumodeliuoti reikia žinoti, kokia yra ir kaip kinta sinapsės būsena, nuo kurios priklauso, kokio stiprumo sąveika bus tarp dviejų neuronų. Ši būsena išsaugoma pagrindinėje kompiuterio atmintyje. Jai pakeisti, procesorius turi pagrindinėje savo magistralėje sugeneruoti reikiamą signalą. Signalas turi keliauti 2-10 centimetrų, kad pasiektų fizinę atmintį. Dar šiek tiek papildomo laiko reikia, kad signalas pasiektų reikiamą atminties ląstelę.

Dabar padauginkite šią seką iš 8000 sinapsių – tiek jų gali turėti vienas žiurkės neuronas. Tada padauginkite rezultatą iš neuronų, sudarančių jūsų modeliuojamas smegenis, skaičiaus – maždaug milijardo. Sveikiname! Jūs ką tik sumodeliavote vieną smegenų veiklos milisekundę.

Mažytis biologinių smegenų neuronų tinklo fragmentas

Biologinės smegenys sugeba greitai susidoroti su milžiniška vienu metu atsirandančios informacijos „mišraine“. Be to, visa tai veikia labai nedidelėje erdvėje, kadangi smegenyse evoliucijos metu atsirado daugybė būdų informacijos judėjimo maršrutui sutrumpinti. Štai kas vyksta šiame organe:

  • Neuronas 1 sugeneruoja impulsą, ir šis informacinis signalas per aksoną nusiunčiamas į Neurono 2 sinapsę.
  • Sinapsė, prieš tai išsisaugojusi savo ankstesnę būseną, įvertina iš Neurono 1 atėjusios informacijos svarbą. Tada informacija integruojama su ankstesne jos pačios būsena ir jungties su Neuronu 1 stiprumu.
  • Tada šie du informacijos fragmentai – Neurono 1 informacija ir Neurono 2 sinapsės informacija – per dendritus juda link Neurono 2 kūno. Čia slypi svarbiausia dalis: Neurono 2 kūną pasiekia ne pradinė informacija, o rezultatas – visas duomenų apdorojimas jau įvyko informacijos perdavimo metu.

Smegenims niekada nereikia paimti informacijos iš vieno neurono, gaišti laiko ją apdorojant ir perduoti rezultatą kitam neuronų rinkiniui. Vietoj to žinduolių smegenyse informacijos saugojimas ir apdorojimas vyksta tuo pat metu ir toje pačioje vietoje.

Šis skirtumas ir yra esminė priežastis, kodėl žmogaus smegenų veiklai užtikrinti pakanka tiek pat energijos, kiek ir 20 vatų lemputei. Tačiau norint dirbtinai atkurti smegenų atliekamas funkcijas, netgi naudojant pačius pažangiausius kompiuterius, prireiktų atskiros elektrinės. Jei kalbėtume tiksliau, informacijos apdorojimo principas nėra vienintelis skirtumas. Smegenys taip pat susideda iš neįtikėtinai efektyvių komponentų, kuriems mūsų gaminiai kol kas negali prilygti. Šiuo aspektu svarbiausia bene tai, kad smegenys gali veikti esant maždaug 100 milivoltų įtampai. CMOS (komplementarinė metalo-oksido-puslaidininkio) skaitmeniniai grandynai, deja, reikalauja daug aukštesnės įtampos (maždaug 1 volto), kad būtų užtikrintas tinkamas jų darbas. Didesnė darbinė įtampa taip pat reiškia, kad signalams perduoti laidais išeikvojama daugiau energijos.

Žinoma, atgaminti aukščiau aprašytą struktūrą naudojant šiandieninę silicio technologiją nėra neįmanoma. Tikras dirbtinis protas hipotetiškai galėtų veikti su bet kokia aparatine įranga, tačiau tai būtų fantastiškai neefektyvu. Neefektyvi įranga nesumažina mūsų noro kurti neuromorfinius algoritmus ir juos testuoti (pavyzdžiui, kuriant mašininės regos sistemas). Tačiau norint pagal tuos pačius principus sukurti kažką „rimtesnio“, mums prireiktų ištiso didelio našumo grafinių procesorių (GPU) masyvo, kuriais būtų „įveikiami“ lygiagretūs skaičiavimai. Neabejotina, jog tai pareikalautų nedidelio miestelio poreikius galinčio tenkinti energijos kiekio.

Šiuolaikiniams superkompiuteriams puikiai įveikiami apibrėžti skaičiavimai, tačiau dirbtinio intelekto prasme jiems dar tolokai iki pačių paprasčiausių biologinių smegenų

Taigi kaip sukurti kažką, kas pasižymėtų smegenims būdinga architektūra? DARPA idėja – pakeisti kompiuterių architektūrą taip, kad atmintis būtų sujungta su skaičiavimus atliekančiais įtaisais. Memristoriai šiuo metu yra geriausiai tam tinkanti technologija. Esminė priežastis yra ta, kad kaip tik šie atminties komponentai pagal energijos sąnaudų efektyvumą pirmieji istorijoje prilygsta biologiniams „kompiuteriams“. Todėl galime būti tikri, kad bent jau memristorių pagrindu pagamintas dirbtinis protas savo matmenimis apytiksliai prilygs žinduolio smegenims.

Supratę, jog siekis „išspausti“ dirbtinį intelektą iš „prigimtinai bukos“ įrangos“ nėra pati geriausia tyrimų strategija, DARPA inžinieriai 2008 metais inicijavo projektą SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable Electronics). Suspėta kaip tik laiku – tais pačiais metais „HP Labs“ sukūrė funkcionuojantį memristorių – įtaisą, kuris jau dabar kai kurių specialistų garbinamas kaip ketvirtasis fundamentalusis elektroninis komponentas, po rezistoriaus, kondensatoriaus ir induktyvinio elemento.

Koncepcija nebuvo nauja. 1971 metais Berkeley universiteto (Kalifornija, JAV) profesorius Leon Chua samprotavo, jog toks įtaisas turėtų funkcionuoti kaip rezistorius, tačiau laidumas priklausytų nuo jo vidinės būsenos ir komponentą veikiančios elektrinės įtampos. Kitaip tariant, memristorius galėtų „prisiminti“, kiek pro jį pratekėjo elektros srovės, todėl puikiai tiktų maitinimo nereikalaujantiems atminties įrenginiams gaminti. Pakanka tik įsivaizduoti, kokį sujudimą rinkoje sukėlė Korėjos dinaminės RAM atminties gigantas „Hynix Semiconductor“, pareiškęs, jog memristoriai yra viena iš alternatyvių technologijų naujos kartos atminties mikroschemoms kurti. Tačiau didžiausias memristorių potencialas slypi kitur. Kadangi atminčiai apie savo būseną išlaikyti jiems nereikalinga energija, atsižvelgiant į šių komponentų funkcionalumą, jie puikiai tinka smegenų sinapsėms imituoti.

Galutinis „HP Labs“ mokslinių tyrimų produktas greičiausiai bus daugelio branduolių mikroprocesorius, sudarytas memristorių pagrindu. Daugumą šiandieninių procesorių turi kelis branduolius (angl. core), t. y. kelis aritmetinius loginius įtaisus. Tačiau HP mikroprocesoriuje jų bus ne keturi, aštuoni ar panašiai, o mažiausiai keli šimtai. Kiekvienas jų bus tiesiogiai sujungtas su vien tik tam branduoliui skirta „megaspartinančiąja“ atmintimi, sudaryta iš milijonų memristorių. Tai reiškia, jog kiekvienas branduolys turės tik jam skirtą „privatų“ atminties banką. Memristoriai yra mažyčiai – netgi pagal šiandieninius puslaidininkinių tranzistorių standartus: HP mokslininkas Stenas Viljamsas (Stan Williams) teigia, jog patobulinus gamybos procesus, jau po poros dešimtmečių bus galima gaminti atminties mikroschemas, pasižyminčias vieno petabito kvadratiniam centimetrui duomenų tankiu. Palyginimui dabartiniai kietųjų diskų technologijų rekordai (kol kas neprieinami masinio vartojimo rinkai) siekia maždaug terabitą vienam kvadratiniam centimetrui.

Nors memristoriai yra mažyčiai, pigūs ir gali būti išdėstomi labai tankiai, kol kas jie gana dažnai genda. Šia savybe jie taip pat primena smegenų sinapses. Tai reiškia, jog nauja struktūra iš principo turi toleruoti pavienių grandynų defektus, panašiai kaip tai vyksta smegenyse. Gali būti, jog pirmą kartą bus nubrėžta riba tarp tradicinės ir biologinės architektūros. Galbūt jums kyla mintis, jog pasikeitus informacijos apdorojimo principams, kompiuteriams prireiks ir naujų programų. Nustebsite, tačiau tikrovė yra kiek kitokia.

Norėdami sukurti smegenis, turėsite atsisakyti atskiros aparatinės ir programinės įrangos koncepcijos, nes tikros smegenys taip neveikia. Smegenyse egzistuoja tik „wetware“, t. y. tik „sulietinė įranga“ (vienas iš galimų lietuviško termino variantų). Jei išties norėtumėte atkartoti žinduolio smegenis, programos ir pats kompiuteris turėtų būti neatskiriami. Kol kas žmonija neturi supratimo, kaip tą padaryti, tačiau memristorius neabejotinai padės užpildyti šią spragą.

Biologiniai algoritmai sukurs atskirą esybę: MoNETA. Įsivaizduokite MoNETA kaip programą, kuri logiškai mąsto, daro išvadas ir mokosi. HP šioje srityje bendradarbiauja su Bostono universitetu. Tačiau iš tiesų šios mokslinių tyrimų įstaigos specialistai – kompiuterinių sistemų modeliuotojai, neurologai, psichologai ir inžinieriai – dirba ne vieni. Jiems talkina tyrinėtojai iš tokių žymių institucijų kaip Harvardo, Brandeis universitetai bei MIT. Įdomu tai, kad smegenų modeliams testuoti ir jos sąveikai su neuromorfine aparatine įranga tirti HP sukūrė specializuotą operacinę sistemą „Cog Ex Machina“. Ji leidžia sistemos projektuotojams bent apytiksliai numatyti, kaip jų kuriami algoritmai veiks naujoje aparatūroje. Iš ko susideda toks dar neegzistuojančios sistemos prototipas?

Pats „neuromorfinis“ principas šiuo atveju reiškia, jog skaičiavimus galima padalinti skirtingoms aparatūros dalims: toms, kurios veikia kaip neurono kūnas, arba kaip dendritai ir aksonai. Kaip tik tuo principu vadovaujasi HP inžinieriai. Pavyzdžiui, „neurono kūno“ tipo procesoriaus branduolys užtikrina architektūros lankstumą. Jis gali apdoroti bet kokius jam atiduodamus duomenis, tad tokią funkciją puikiai (nors ir neefektyviai) imituoja tradiciniai asmeninių kompiuterių mikroprocesoriai (CPU). Blogai tai, kad šio tipo branduoliui reikia daugiau energijos nei antrojo tipo branduoliams. Todėl šio tipo elementų bendroje sistemoje turėtų būti tik nedidelė procentinė dalis.

„Dendritinis-aksoninis“ branduolys savo veikimu labiau primena nebrangų, tačiau didelio našumo grafinį procesorių (GPU). Kaip ir dendritai, GPU pasižymi specifine architektūra, kuri yra optimizuota tik tam tikro tipo veiksmams atlikti – šiuo atveju vykdomos sudėtingos tiesinės algebros operacijos, aproksimuojančios dendrituose vykstančius procesus. GPU yra pritaikyti lygiagretiems skaičiavimams vykdyti; šiuo aspektu jie taip pat panašūs į dendritus. Tačiau neigiamas aspektas yra tai, kad GPU branduolių veiksmų spektras labai ribotas.

Galutinėje DARPA aparatūros versijoje dendritiniai branduoliai pasižymės daug mažesniu lankstumu nei neuroniniai, tačiau juose bus saugomi neįtikėtinai dideli informacijos kiekiai, bei, kaip ir neuronų ataugos, jie sudarys didžiąją dalį visos sistemos skaičiuojamųjų centrų. Tuo tarpu memristoriai vykdys ne tik atminties funkciją, bet ir veiks kaip sinapsės, tarpininkaujančios informacijos tarp skirtingų neuronų perdavimui. Programuotojui tokia dviejų tipų branduolius turinti sistema su komplikuotu atminties išdėstymu neabejotinai kels didžiulių sunkumų.

Esminis bruožas, skiriantis MoNETA nuo kitų dirbtinių intelektų yra tai, kad jam nereikės kurti specializuotų programų. MoNETA turėtų gebėti adaptuotis ir veikti efektyviai, analogiškai smegenims. Sistema bus paprasčiausiai „supažindinama“ su įvairiomis situacijomis ir mokysis dinamiškai. Išties universalus dirbtinis protas turi gebėti suvokti daugybę vienu metu vykstančių įvykių. Tačiau esama kai kurių praktinių apribojimų. Vienas jų – tai, kad žmonija nėra sukūrusi unifikuotos „sąmonės teorijos“. Tačiau darbai šioje srityje vyksta.

Kaip sužinosime, jog mums pavyko? Kaip žinosime, jog visos šios pastangos, nauja aparatūra ir ją valdantys algoritmai davė tai, ko mes siekiame – dirbtinį intelektą? Specialistų atsakymas vienareikšmis: tikslas bus pasiektas, kai mes sugebėsime motyvuoti MoNETA bėgti, plaukti ir ieškoti maisto, ir sistema tai atliks dinamiškai, nenaudodama jokios atskirai sukurtos šias funkcijas valdančios programos. Sistema turėtų sugebėti mokytis viso savo gyvavimo ciklo metu; jai neturėtų reikėti perprogramavimo, norint atlikti kokią nors naują užduotį. Reikalingą informaciją DI turėtų „pasiimti“ savarankiškai, iš savo aplinkos. Mes patys išmokstame atpažinti naujus žmones ir vietoves, tad MoNETA turės mokėti tą patį.

Jau įpusėjus kitiems metams mokslininkai pradės testuoti pirmuosius dirbtinio intelekto kandidatus. Jų bus tūkstančiai – visi pasižymės nedideliais architektūros skirtumais. Atlikus bandymus, bus išrenkami geriausi modeliai; vėliau jie bus tobulinami, kol galiausiai atitiks bazinius dirbtiniam protui keliamus kriterijus. Šie kompiuteriai sąveikaus su aplinka ir evoliucionuos, tarsi gyvas organizmas. Mokslininkai tikisi galiausiai surasti tą smegenų sričių ir jų jungčių derinį, kuris užtikrintų visiškai autonominę intelektu pasižyminčią veiklą. Vėliau tie patys architektūros elementai bus perkelti į memristorių pagrindu sudarytą procesorių. Kas toliau? Kai atsiras pirmosios „neuroninės“ mikroschemos, jas bus galima montuoti realų pasaulį pasieksiančiose robotų platformose. Robotai dirbs slaugais, keliaus į Marsą ir pilotuos lėktuvus – ir tai tik pradžia.

Ar ši elektronika gebės „patirti“ emocijas? Į šį klausimą atsakyti kol kas sunku. Tiesa, kol kas subjektyvių išgyvenimų savimonės imitavimas nėra esminis tyrinėtojų tikslas. Tačiau neabejotina, jog kažkada neuromorfinių dirbtinių protų bus daug ir jie bus skirtingi. Ir ne tik prilygstančių vaisinių muselių, sliekų arba žiurkių protui, bet ir žmogaus.

Pasidalinkite su draugais
Aut. teisės: www.technologijos.lt
(7)
(0)
(7)

Komentarai (37)